YES 1.181 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((minimum :: [Int ->  Int) :: [Int ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((minimum :: [Int ->  Int) :: [Int ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
min x y
 | x <= y
 = x
 | otherwise
 = y

is transformed to
min x y = min2 x y

min1 x y True = x
min1 x y False = min0 x y otherwise

min0 x y True = y

min2 x y = min1 x y (x <= y)

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule Main
  (minimum :: [Int ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_min1(vx49, vx50, Succ(vx510), Succ(vx520)) → new_min1(vx49, vx50, vx510, vx520)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_min10(vx40, vx41, Succ(vx420), Succ(vx430)) → new_min10(vx40, vx41, vx420, vx430)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldl(vx30, :(vx310, vx311)) → new_foldl(new_min11(vx30, vx310), vx311)

The TRS R consists of the following rules:

new_min11(Pos(Zero), Pos(Succ(vx31000))) → Pos(Zero)
new_min11(Pos(Succ(vx3000)), Pos(Zero)) → Pos(Zero)
new_min11(Neg(Succ(vx3000)), Pos(vx3100)) → Neg(Succ(vx3000))
new_min11(Neg(Zero), Pos(Succ(vx31000))) → Neg(Zero)
new_min11(Pos(Zero), Neg(Zero)) → Pos(Zero)
new_min15(vx40, vx41, Zero, Zero) → new_min13(vx40, vx41)
new_min14(vx49, vx50, Succ(vx510), Succ(vx520)) → new_min14(vx49, vx50, vx510, vx520)
new_min11(Neg(Zero), Neg(Zero)) → Neg(Zero)
new_min11(Neg(Zero), Pos(Zero)) → Neg(Zero)
new_min11(Pos(Succ(vx3000)), Neg(vx3100)) → Neg(vx3100)
new_min11(Neg(Succ(vx3000)), Neg(Succ(vx31000))) → new_min14(vx3000, vx31000, vx31000, vx3000)
new_min15(vx40, vx41, Succ(vx420), Succ(vx430)) → new_min15(vx40, vx41, vx420, vx430)
new_min15(vx40, vx41, Succ(vx420), Zero) → Pos(Succ(vx41))
new_min14(vx49, vx50, Zero, Succ(vx520)) → new_min12(vx49, vx50)
new_min13(vx40, vx41) → Pos(Succ(vx40))
new_min11(Pos(Zero), Neg(Succ(vx31000))) → Neg(Succ(vx31000))
new_min14(vx49, vx50, Zero, Zero) → new_min12(vx49, vx50)
new_min11(Pos(Zero), Pos(Zero)) → Pos(Zero)
new_min12(vx49, vx50) → Neg(Succ(vx49))
new_min14(vx49, vx50, Succ(vx510), Zero) → Neg(Succ(vx50))
new_min15(vx40, vx41, Zero, Succ(vx430)) → new_min13(vx40, vx41)
new_min11(Pos(Succ(vx3000)), Pos(Succ(vx31000))) → new_min15(vx3000, vx31000, vx3000, vx31000)
new_min11(Neg(Succ(vx3000)), Neg(Zero)) → Neg(Succ(vx3000))
new_min11(Neg(Zero), Neg(Succ(vx31000))) → Neg(Succ(vx31000))

The set Q consists of the following terms:

new_min11(Neg(Succ(x0)), Neg(Succ(x1)))
new_min14(x0, x1, Succ(x2), Succ(x3))
new_min11(Pos(Zero), Pos(Zero))
new_min11(Pos(Zero), Pos(Succ(x0)))
new_min11(Pos(Succ(x0)), Pos(Succ(x1)))
new_min11(Neg(Zero), Neg(Zero))
new_min11(Neg(Zero), Pos(Zero))
new_min11(Pos(Zero), Neg(Zero))
new_min11(Neg(Succ(x0)), Neg(Zero))
new_min15(x0, x1, Zero, Succ(x2))
new_min15(x0, x1, Succ(x2), Succ(x3))
new_min14(x0, x1, Zero, Succ(x2))
new_min13(x0, x1)
new_min14(x0, x1, Succ(x2), Zero)
new_min15(x0, x1, Zero, Zero)
new_min11(Pos(Succ(x0)), Neg(x1))
new_min11(Neg(Succ(x0)), Pos(x1))
new_min11(Pos(Succ(x0)), Pos(Zero))
new_min11(Neg(Zero), Pos(Succ(x0)))
new_min11(Pos(Zero), Neg(Succ(x0)))
new_min14(x0, x1, Zero, Zero)
new_min15(x0, x1, Succ(x2), Zero)
new_min12(x0, x1)
new_min11(Neg(Zero), Neg(Succ(x0)))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: